Print-ISSN 3079-2886; E-ISSN 3079-2894
az
ru

A new technique for determining the formation’s thermal conductivity based on the cylindrical probe with a constant heat flow rate

Eppelbaum L.V.1,2

Dept. of Geophysics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 6997801, Tel Aviv, Israel: levap@tauex.tau.ac.il

Azerbaijan State Oil and Industry University, Azerbaijan 20 Azadlig Ave., Baku, AZ1010 

DOI: 10.35714/ggistrat20250100012

Summary. The thermal conductivity of geological formations is a parameter used to estimate the terrestrial heat flow and the geothermal energy resources. This parameter is also essential in environmental studies and the search for hydrocarbons and underground water reserves. A new technique has been developed to determine thermal conductivity formation by constant heat flow.
Earlier, Eppelbaum and Kutasov (2013) analyzed the case of the cylindrical probe with a variable heat flow rate. However, as indicated by experience, in geophysical practice, frequently observed situations have constant (or quasi-constant) heat flow rates. This statement simplifies calculations and allows for more accurate results. It is assumed that core samples or cuttings could determine dry formation density, porosity, and pore fluid saturations. In this case, the volumetric specific heat of formations can be estimated. It is also assumed that the transient temperature-time data are available for a cylindrical probe with a constant heat flow rate placed in a wellbore. The widely known Newton method was used to solve the problem. A semi-analytical equation describing the temperature of the probe wall is used to determine the formation conductivity. The formation thermal diffusivity is also calculated. Finally, a simulated example is presented.

Keywords: thermal conductivity, thermal diffusivity, cylindrical probe, constant heat flow rate


REFERENCES



Carslaw H.S. and Jaeger J.C. Conduction of Heat in Solids. 2nd ed. Oxford University Press. Oxford, UK, 1959, 310 p.

Dalla Santa G., Galgaro A., Sassi R., Cultrera M., Scotton P., Mueller J.,  Bertermann D., Mendrinos D., Pasquali R., Perego R., Pera S., Di Sipio E., Cassiani G., De Carli M. and Bernardi A. An updated ground thermal properties database for GSHP applications. Geother­mics, Elsevier. Vol. 85, 2020, 101758, https://doi.org/ 10.1016/j.geothermics.2019.101758.

Boike J., Chadburn S., Martin J., Zwieback S., Althuizen I.H.J., Anselm N., Cai L., Coulombe S., Lee H., Lilje­dahl A.K. et al. Standardized monitoring of permafrost thaw: A user-friendly, multiparameter protocol. Arctic Science, Vol. 8, No. 1, 2021, pp. 153-182. https://doi.org/ 10.1139/as-2021-0007.

Earlougher R.C., Jr. Advances in Well Test Analysis. SPE, New York, Dallas, Vol. 5, 1977, 264 p.

Eppelbaum L.V. and Kutasov I.M. Cylindrical probe with a variable heat flow rate: A new method for determination of the formation thermal conductivity. Central European Journal of Geosciences, Vol. 5, No. 4, 2013, pp. 570-575, https://doi.org/10.2478/s13533-012-0155-2.

Eppelbaum L.V., Kutasov I.M. and Pilchin A.N. Applied Geothermics. Lecture Notes in Earth System Sciences. Springer. Heidelberg – N.Y., London, 2014, 751 p.  

Grossman S.I. Calculus. Academic Press. NY, San Francisco, London, 2014, 1337 p.

Kappelmeyer O. and Haenel R. Geothermics with special reference to application. Gebruder Borntraeger. Berlin, 1974, 238 p.

Koven C.D., Riley W.J. and Stern A. Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 earth system models. Jour. of Climate, Vol. 26, Issue 6, 2013, pp. 1877-1900, https://doi.org/ 10.1175/JCLI-D-12-00228.1.

Kutasov I.M. and Eppelbaum L.V. Pressure and temperature well testing. 1st Edition, CRC Press. Boca Raton, 2015, 276 p., https://doi.org/10.1201/b19295.

Kutasov I.M. and Kagan M. Cylindrical probe with a constant temperature – determination of the formation thermal conductivity and contact thermal resistance. Geothermics, Vol. 32, Issue 2, 2003, pp. 187-193, https://doi.org/10.1016/S0375-6505(03)00014-2.

Li H., Zhao L., Han D.-H., Sun M. and Zhang Y. Elastic properties of heavy oil sands: Effects of temperature, pressure, and microstructure. Geophysics, Vol. 81, Issue 4, 2016, pp. D453-D464, https://doi.org/10.1190/ GEO2015-0351.1.

Liu C., Li K., Chen Y., Jia L. and Ma D. Static formation temperature prediction based on bottom hole tempe­rature. Energies, Vol. 9, No. 8, 2016, 646 p., https://doi.org/ 10.3390/en9080646.

Mufti I.R. Geothermal aspects of radioactive waste disposal into the subsurface. Journal of Geophysical Research, Vol. 76, Issue 35, 1971, pp. 8568-8585, https://doi.org/10.1029/JB076i035p08568.

Pasquale V., Gola G., Chiozzi P. and Verdoya M. Thermophysical properties of the Po Basin rocks. Geophysical Journal International, Vol. 186, Issue 1, 2011, pp. 69-81, https://doi.org/10.1111/j.1365-246X. 2011.05040.x.

Popov Yu., Romushkevich R., Korobkov D., Mayr S., Bayuk, I., Burkhardt H. and Wilhelm H. Thermal properties of rocks of the borehole Yaxcopoil-1 (Impact Crater Chicxulub, Mexico). Geophysical Journal International, Vol. 184, Issue 2, 2011, pp. 729-745, https://doi.org/10.1111/j.1365-246X.2010.04839.x.

Tomaškovičová S. and Ingeman-Nielsen T. Coupled thermo-geophysical inversion for permafrost monito­ring. The Cryosphere, Vol. 18, Issue 1, 2024, pp. 321-340, https://doi.org/10.5194/tc-18-321-2024.